
Intro. Discrete-Time Filter Design 1

An Introduction to Discrete-Time Filter Design

Michael Rice
Brigham Young University

1 Preliminaries

1.1 Signal Processing for Sampled Data

This laboratory project is devoted to designing filters to operate on sampled data. In these applica-
tions, the signal characteristics are described in the continuous time domain. But because the signal
processing must be performed in the discrete-time domain, we need to know how the continuous
time domain signal properties show up in the discrete-time domain. To quantify the relationship
between the Fourier transform of a continuous time signal and the DTFT of its samples, we revisit
the discussion of Sections 6-12.4 and 6-12.5, pp. 309–310.

To this end, consider a band limited continuous time signal x(t) with Fourier transform X̂(ω).
As a conceptual tool, the text defined the impulse train sampled signal xs(t) defined by

xs(t) = x(t)×
∞∑

n=−∞

δ(t− nTs). (1)

Section 6-12.4 derived the Fourier transform X̂s(ω) by leveraging the property that multiplication
in the time domain is convolution in the frequency domain:

X̂s(ω) =
1

2π
X̂(ω) ∗ Λ̂(ω)

=
1

2π
X̂(ω) ∗ 2π

Ts

∞∑
k=−∞

δ

(
ω − 2πk

Ts

)

=
1

Ts

∞∑
k=−∞

X̂

(
ω − 2πk

Ts

)
. (2)

This expression teaches us that the Fourier transform of a sampled signal is periodic in ω with
period 2π/Ts. Now, the DTFT of x[n] = x(nTs) is

X(ejΩ) =
∞∑

n=−∞

x[n]e−jΩn. (3)

2 1 Preliminaries

It is not clear from (2) what the relationship is between the DTFT of x[n] and the Fourier transform
of x(t). So what is this relationship? To answer this question, we compute the Fourier transform
X̂s(ω) directly:

X̂s(ω) =

∫ ∞
−∞

xs(t)e
−jωtdt

=

∫ ∞
−∞

x(t)×
∞∑

n=−∞

δ(t− nTs)e−jωtdt

=

∫ ∞
−∞

∞∑
n=−∞

x(nTs)δ(t− nTs)e−jωtdt

=
∞∑

n=−∞

x(nTs)

∫ ∞
−∞

δ(t− nTs)e−jωtdt

=
∞∑

n=−∞

x(nTs)e
−jωTsn (4)

The last line is equal to the DTFT (3) if ωTs = Ω. Equating (2) and (4) we have

∞∑
n=−∞

x[n]e−jΩn︸ ︷︷ ︸
DTFT of x[n] = x(nTs)

=
1

Ts

∞∑
k=−∞

X̂

(
ω − 2πk

Ts

)
.︸ ︷︷ ︸

periodic replicas of the Fourier transform of x(t)

(5)

This shows that the DTFT of x[n] = x(nTs) is related to the Fourier transform of x(t) as follows:

The DTFT of x[n] = x(nTs) is equal to scaled periodic replicas of the Fourier trans-
form of x(t). The replication period is the sample rate. The amplitude scaling is the
sample rate. The discrete-time frequency axis (Ω rads/sample) and the continouous-
time frequency axis (ω rads/s) are related by ωTs = Ω.

The relationship is illustrated in Figure 1. The figure shows the Fourier transform of ten sinusoids
with frequencies 20 kHz, 22 kHz, . . . , 38 kHz. These frequencies correspond to the frequencies
you will have to handle in the laboratory assignment. The top plot in Figure 1 shows the Fourier
transform in the f (cycles/s) variable whereas the second plot in Figure 1 shows the Fourier trans-
form in the ω (rads/s) variable. The third plot is Fourier transform of the impulse sampled signal
xs(t) [see (1)]. Here, the sample rate is fs = 100 ksamples/s (or, Ts = 10−5 s/sample). The rela-
tionship between the second and third plots is an illustration of the relationship (2). The DTFT of
the samples is shown in the fourth plot of Figure 1. Note that the DTFT is periodic in Ω with period

Intro. Discrete-Time Filter Design 3

2π as expected. Because of this, it is customary to plot only the 2π interval centered at Ω = 0. The
relationship between the third and fourth plots of Figure 1 is an illustration of (4). Finally, the fifth
plot of Figure 1 shows the DTFT using a frequency axis scaled to the F (cycles/sample) variable.

4 1 Preliminaries

20
38

f
(k

H
z)

�
20

�
38

X̂
(!

)

X̂
(f

)1

0

1

0

!
(k

rad
s/s)

40
⇡

�
40⇡

0

!
(k

rad
s/s)

40
⇡

�
40⇡

X̂
s (!

)

200
⇡

�
20

0
⇡

�
24

0
⇡

240
⇡

···
···

10
5

sam
ple rate

0

···
···

10
5

sam
ple rate

X
(e

j
⌦
)

1
00

⇡

half sam
ple rate

0.40⇡
⇡

2⇡
2.40⇡

half sam
ple rate

76
⇡

�
76⇡

�
76⇡

276
⇡

�
27

6
⇡

0.76⇡
2.76⇡

�
2
.7

6
⇡

�
2
.4

0
⇡

�
2
⇡

�
⇡

�
0
.76

⇡
�

0
.40

⇡

w
hat w

e norm
ally think of as the D

TFT

0

10
5

half sam
ple rate

�
0.20

0
.20

0
.38

�
0.38

�
0.50

0
.50

F
(cy

cles/sam
p
le)

X
(e

j
2
⇡

F
)

76
⇡

⌦
(rad

s/sam
p
le)

Figure
1:A

n
exam

ple
illustrating

the
relationship

betw
een

the
Fouriertransform

ofa
continuous

tim
e

signaland
the

D
T

FT
ofits

sam
ples.H

ere
the

continuous
tim

e
signalcom

prises
ten

sinusoids.T
he

sam
ple

rate
is

100
ksam

ples/s.

Intro. Discrete-Time Filter Design 5

1.2 Filter Design

In this laboratory assignment, you will have to “design filters” to detect which of ten frequencies is
present the data. Because the phrase “design a filter” is mysterious to junior electrical or computer
engineering majors, what this phrase means needs to be defined before moving on.

A convenient starting point is the general z-domain transfer function

H(z) =
b0 + b1z

−1 + · · ·+ bM−1z
−(M−1)

1 + a1z−1 + · · ·+ aN−1z−(N−1)
. (6)

This is a rational function of z. The word rational suggests ratio, and ratio refers to the ratio of
polynomials. Note that here we follow another convention from the discrete-time signal processing
world: we think of rational function as a ratio of polynomials in z−1. In your text, (7.111) is a ratio
of polynomials in z. Both forms are equivalent. Both forms are correct. Polynomials in z are more
common in digital control. Following the discrete-time signal processing convention we define the
polynomials

A(z) = 1 + a1z
−1 + · · ·+ aN−1z

−(N−1)

B(z) = b0 + b1z
−1 + · · ·+ bM−1z

−(M−1)
(7)

and think of the z-transform as
H(z) =

B(z)

A(z)
. (8)

The roots of the polynomial B(z) are called the zeros of H(z) and the roots of the polynomial
A(z) are called the poles of H(z). Here, the LTI system is defined by two lists of numbers

{a0, a1, . . . , aN−1} {b0, b1, . . . , bM−1}. (9)

You have learned that a physically realizable system is one for which N ≥ M (see pg. 365 of
the text). These two lists of numbers are called the filter coefficients. Consequently, an important
element of “filter design” involves figuring out what these coefficients need to be to create an LTI
system that meets some performance criteria.

In the lab assignment, you will explore two kinds of discrete-time filters: finite impulse re-
sponse (FIR) filters and infinite impulse response (IIR) filters. These terms, FIR and IRR, refer to
the number of non-zero values in the impulse response h[n] of an LTI system. For the purposes of

6 1 Preliminaries

this lab can think of both of these in terms of the z-domain transfer function

H(z) =
b0 + b1z

−1 + · · ·+ bM−1z
−(M−1)

a0 + a1z−1 + · · ·+ aN−1z−(N−1)
. (10)

The input (x[n]), output (y[n]) relationship for this filter is the recursion

N−1∑
i=0

aiy[n− i] =
M−1∑
i=0

bix[n− i]. (11)

[See equation (7.108) on page 364 of the text.]

• FIR filter: the z domain transfer function of an FIR filter is the special case of H(z) where
a0 = 1 and a1 = · · · = aN−1 = 0:

H(z) = b0 + b1z
−1 + · · ·+ bM−1z

−(M−1) (12)

Here, the input-output relationship reduces to

y[n] =
M−1∑
i=0

bix[n− i]. (13)

This is the convolution operation involving the sequence of filter coefficients {b0, b1, . . . , bM−1}
and the input data sequence x[n]. Caveat lector! In the next section, you will see the filter
coefficients described as the sequence {h(−L), . . . , h(0), . . . , h(L)}. This may appear at
first glance to contradict our development. But if we line up the filter coefficients as follows

b0 b1 · · · bL+1 · · · bM−2 bM−1

h(−L) h(−L+ 1) · · · h(0) · · · h(L− 1) h(L),
(14)

we see that both lists are capable of telling the same story as long a M = 2L + 1. From
a pole-zero point of view, FIR filter design is equivalent to defining the zeros of the LTI
system.

• IIR filter: The class of practical IIR filters is defined by the z-domain transfer function H(z)

where at least one of the ai for i > 0 is not zero. This produces the recursive relationship
whose corresponding impulse response goes on for ever. From a pole-zero point of view, IIR
filter design is equivalent to defining the poles and zeros of the LTI system.

Intro. Discrete-Time Filter Design 7

When we speak of “designing the filter,” we mean three things:

1. First, the performance criteria must be defined. In rare cases, the performance criteria are
handed to the signal processing engineer. More commonly, the signal processing engineer
must derive the performance criteria from a high level description of what is supposed to
happen. The most common performance criteria specify the filter passband frequencies and
the desired out-of-band attenuation. Additional considerations sometimes come into play,
such as maximum allowable passband ripple, linear phase, and computational constraints
(i.e., a maximum number of multiplications is allowed.)

2. Equipped with the performance criteria, we must compute the coefficients to produce an LTI
system that meets the performance criteria.

3. Lastly, we must instantiate the algorithm. In hardware, this might mean a physical layout in
VLSI (for an ASIC) or a VHDL definition (for an FPGA). In software, this means writing
C, C++, or Assembly(!) code to compute the recursion (11).

Here, we will focus on the second step and leave the first step and an exercise. Doing the project
in MATLAB R© renders the third step trivial.

The basic design approaches for FIR and IIR filters are different. Consequently, the two ap-
proaches are outlined in two different sections. The natural question for a student to ask is “which
is better?” As with most thing, the correct answer is the distressing response,“it depends.” But the
following are some of the more important considerations:

• Filter order required to meet given filter specifications: Here, “filter order” refers to the
length of the FIR filter and to the degree of the denominator polynomial describing the
recursive IIR filter. Filter order is important because it determines the number of “multiply-
accumulate” operations required to instantiate the filter. The number of “multiply-accumulate”
operations defines the complexity of the discrete-time filter. It is almost always the case that
the performance specifications can be met by an IIR filter with lower order than an FIR filter.

• Stability: A causal stable LTI system is one for which all of its poles are inside the unit circle.
Because an FIR filter has no poles (other than those at the z-plane origin), an FIR filter is
always stable (except in the most pathological of cases). An IIR filter, on the other hand,
has poles and the potential for stability issues exists. An IIR filter with strict passband and
stopband requirements has poles near the unit circle. Coefficient quantization and round-off
effects accompanying fixed-point arithmetic may cause these poles to migrate to the wrong
side of the unit circle.

8 1 Preliminaries

• Linear Phase: Many applications require a filter to have linear phase. (Consider taking
ECEn 487 for more on what this means.) Linear phase can be guaranteed in an FIR filter by
imposing certain symmetry constraints on the filter coefficients. With IIR filters, it is often
difficult to produce a linear phase filter, especially at frequencies near the band edge.

• Digital hardware: In digital hardware designs, pipelining is often used to create really really
really fast implementations (at the cost of bulk delay through the system). Instantiating an
FIR filter with a pipelined architecture is natural — the filter structure itself almost begs the
digital designer to pipeline it. IIR filters, on the other hand, are not readily amenable to
pipelining. There are some tricks that can be used, but they are application dependent and
must be considered on a case-by-case basis.

• Programmable processor: When a filter is to be instantiated on a programmable processor,
the dominant factor defining performance is the complexity. Complexity follows directly
from filter order. IIR filters, with lower filter order, are usually the better candidates for
instantiations in programmable processors assuming linear phase and stability are not im-
portant considerations.

These issues are summarized below. The differences between FIR and IIR filters are overstated in
some cases (sometimes the poles of the IIR filter are not near the unit circle so that stability is not
an issue, sometimes IIR filter phase is “linear enough” to meet the requirements). The exaggerated
differences are to help in your initial understanding of the differences between the filter types.
Again, those interested in discrete-time filter design should consider taking ECEn 487.

Figure of Merit FIR IIR

Filter order loser winner

Stability winner loser

Linear phase winner loser

Pipelined architecture for fast
hardware implementation

winner loser

Software implementation on
programmable processor

loser winner

Intro. Discrete-Time Filter Design 9

2 FIR Filter Design

The starting point is the ideal bandpass filter shown in Figure 2 (a). This is a plot of the DTFT
of an ideal band-pass filter centered at Ω = Ω0 rads/sample with a bandwidth of W rads/sample.
That is, we have

Hideal(e
jΩ) =

1 Ω0 − W
2
≤ |Ω| ≤ Ω0 + W

2

0 otherwise.
(15)

The impulse response is inverse DTFT of Hideal(e
jΩ). The inverse DTFT, given by (7.154b) for

Ω1 = −π, is

hideal[n] =
1

2π

∫ π

−π
Hideal(e

jΩ)ejnΩdΩ. (16)

Making the appropriate substitutions, we have

hideal[n] =
1

2π

∫ −Ω0+W/2

−Ω0−W/2
ejnΩdΩ +

1

2π

∫ Ω0+W/2

Ω0−W/2
ejnΩdΩ

=
1

j2πn
ejnΩ

∣∣∣∣∣
−Ω0+W/2

−Ω0−W/2

+
1

j2πn
ejnΩ

∣∣∣∣∣
Ω0+W/2

Ω0−W/2

=
1

j2πn

[
ejn(−Ω0+W/2) − ejn(−Ω0−W/2) + ejn(Ω0+W/2) − ejn(Ω0−W/2)

]

=
1

j2πn

[
e−jnΩ0

(
ejnW/2 − e−jnW/2

)
+ ejnΩ0

(
ejnW/2 − e−jnW/2

)]
=

1

j2πn

(
ejnW/2 − e−jnW/2

) (
ejnΩ0 + e−jnΩ0

)
=

2

πn
sin (nW/2) cos (nΩ0)

=
W

π

sin (nW/2)

nW/2
cos (nΩ0) . (17)

The important observations here are

1. The impulse response of the ideal bandpass filter hideal[n] is defined for all −∞ < n < ∞.
In other words, the ideal bandpass filter is an IIR filter. (But, it is not a recursive filter—think
about it.) For a given center frequency Ω0 and bandwidth W , one can use (17) to compute
the filter coefficients.

2. The second term in (17) is a sinc function. The sinc function is defined by equation (5.66) in

10 2 FIR Filter Design

⇡�⇡ �⌦0 ⌦00

1
WW

⌦

1

(a)

BB

1/2�1/2 F0�F0 0

(b)

F

Figure 2: The DTFT of an ideal bandpass filter: (a) The ideal bandpass filter using the traditional
traditional Ω-frequency axis. The units for Ω are rads/sample. The bandwidth is W rads/sample
and the center frequency is Ω0 rads/sample. (b) The ideal bandpass filter using a different frequency
axis. The units for F are cycles/sample. The bandwidth is B cycles/sample and the center fre-
quency is F0 cycles/sample. The relationship between the two versions are Ω = 2πF , Ω0 = 2πF0,
and W = 2πB.

Section 5-7 of the text.

3. For the lab project, you may find it more useful to think of the filter parameters in terms
of the variables F , F0 and B shown in Figure 2 (b). Using the relationships Ω = 2πF ,
Ω0 = 2πF0, and W = 2πB, (17) may be expressed as

hideal[n] = 2B
sin(πBn)

πBn
cos(2πF0n). (18)

The main problem with the ideal band-pass filter is that it is an IIR filter. We want an FIR filter.
A example of (18) for B = 0.05 cycles/sample and F0 = 0.2 cycles/sample for −500 ≤ n ≤ 500

is shown in Figure 3. Two important observations apply here and generally:

Intro. Discrete-Time Filter Design 11

−500 0 500
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 3: A stem plot of (18) for B = 0.05 cycles/sample and F0 = 0.2 cycles/sample for −500 ≤
n ≤ 500.

1. The |h[n]| decreases as |n| increases.

2. The large values of |h[n]| are concentrated in the vicinity of n = 0.

These observations suggest a way to create the desired FIR filter from the given IIR filter: truncate

the ideal filter impulse response with the center at n = 0. In mathematical terms, this is

hFIR[n] =

hideal[n] −L ≤ n ≤ L

0 otherwise.
(19)

The truncation defined by (19) produces a length-(2L + 1) FIR filter. The DTFT of the impulse
response (18) for B = 0.05 cycles/sample and F0 = 0.2 cycles/sample and for four different
truncation lengths is plotted in Figure 4. Here we see that as the length of the filter increases, its
DTFT more closely resembles the ideal frequency response.

The frequency-domain plots of Figure 4 also reveal something else: very high sidelobes. Ex-
cept for the shortest length, notice that the first sidelobe on all of them is about the at about the
same level, −20 dB. This means the filter only attenuates the energy in the adjacent band by ap-
proximately 20 dB. Is this enough? The answer depends on the application, but usually the answer
is no.

Clearly, the sidelobes result from the truncation. If we had a way to model the time domain
truncation operation in the frequency domain, then we might see how to reduce the sidelobe levels.
So, of all the ways to think about truncation, we seek the one that has a useful frequency domain
representation. In this light, the best way to think about truncation is as multiplication by a se-

12 2 FIR Filter Design

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−60

−50

−40

−30

−20

−10

0

frequency (cycles/sample)

m
a
g
n
it
u
d
e
 (

d
B

)

L=10

L=25

L=50

L=250

0.1 0.15 0.2 0.25 0.3
−60

−50

−40

−30

−20

−10

0

frequency (cycles/sample)

m
a
g
n
it
u
d
e
 (

d
B

)

L=21

L=51

L=101

L=501

Figure 4: A plot of the DTFT of (18) for B = 0.05 cycles/sample and F0 = 0.2 cycles/sample
for different truncation lengths. (top) view for −π ≤ Ω < π rads/sample; (bottom) view for
0.2π ≤ Ω < 0.6π rads/sample.

Intro. Discrete-Time Filter Design 13

quence comprising ones in the locations corresponding to the samples we keep, and zeros in the
locations corresponding to the samples lost to truncation. The situation is illustrated in Figure 5.
Here, the impulse response of the desired FIR filter is

hFIR[n] = w[n]× hideal[n] (20)

where the w[n] is the window

w[n] =

1 −L ≤ n ≤ L

0 otherwise.
(21)

The reason we prefer this representation of time-domain truncation is that we know how to
think about it in the frequency domain: multiplication in the time domain is convolution in the
frequency domain (see Property 7 in Table 7-7 on page 378):

HFIR(ejΩ) =
1

2π
W(ejΩ) ∗Hideal(e

jΩ) (22)

=
1

2π

∫ π

−π
W(ej(λ−Ω))Hideal(e

jλ)dλ. (23)

The DTFT of the window is

W(ejΩ) =
L∑

n=−L

e−jΩn =

sin

(
(2L+ 1)

Ω

2

)
sin

(
Ω

2

) . (24)

The frequency-domain convolution is illustrated in Figure 6. The figure shows that the sidelobes
observed in HFIR(ejΩ) are a result of the sidelobes in W(ejΩ). The important observations here
are

1. The closer W(ejΩ) to an impulse, the closer HFIR(ejΩ) is to Hideal(e
jΩ). The only way to

make W(ejΩ) close to an impulse is to make L large. This explains the plots in Figure 4:
as the length increased, W(ejΩ) more closely approximated an impulse and HFIR(ejΩ) more
closely approximated Hideal(e

jΩ).

2. (This one is the mind blower.) We could use another function to window hideal[n]. A good
window has a narrow main lobe and low side lobes. (That is, it must look like an impulse!)
For a finite-length sequence, narrow main lobe and low sidelobes are competing demands.
So, we must accept a tradeoff. But in general, we prefer windows that are smooth and avoid

14 2 FIR Filter Design

hideal[n]

hFIR[n]

w[n]

Figure 5: A graphical illustration of modeling time domain truncation as multiplication by the
window function w[n].

Intro. Discrete-Time Filter Design 15

Table 1: The windows implemented by MATLAB R©.

MATLAB R© command Description

bartlett(N) the Bartlett window
barthannwin(N) the modified Bartlett-Hann window
blackman(N) the Blackman window
blackmanharris(N) the minimum 4-term Blackman-Harris window
bohmanwin(N) the Bohman window
chebwin(N,R) the Chebyshev window
flattopwin(N) the flat top window
gausswin(N,alpha) the Gaussian window
hamming(N) the Hamming window
hann(N) the Hann window
kaiser(N,Beta) the Kaiser window
nuttallwin(N) the Nutall modified minimum 4-term Blackman-Harris window
parzenwin(N) the Parzen de la Valle-Poussin window
rectwin(N) the rectangular window
taylorwin(N,NBAR,SLL) the Taylor window
tukeywin(N,R) the Tukey window
triang(N) the triangular window

the sharp corners of the rectangular window. There are a number of windows that represent
different points in the tradeoff space. MATLAB R© implements the windows listed in Table 1.

An example using the Blackman-Harris window is shown in Figure 7. Here, hideal[n] is given
by (18) for B = 0.05 cycles/sample and F0 = 0.2 cycles/sample. The frequency responses are for
the windowed versions of (18) using the length-101 rectangular and Blackman-Harris windows.
Observe that with the Blackman-Harris window, the sidelobes are much much lower, but the main
lobe (the pass band) is wider. The MATLAB R© code that generates the plot is the following:

16 2 FIR Filter Design

⇡⌦00

1

⌦

⇡⌦00

1

⌦

(a)

(b)

Figure 6: A graphical representation of the frequency-domain convolution describing windowing
(truncation) in the time domain. Note that only the positive frequency axis is shown — this is to
keep the illustration simple.

Intro. Discrete-Time Filter Design 17

F0 = 0.20; % center frequency (cycles/sample)
B = 0.05; % bandwidith (cycles/sample)

L = 51; % the length parameter L
N = 2*L+1; % the filter length
n = (-L:L)’; % the sample index
hideal = 2*B*cos(2*pi*F0*n).*sinc(B*n);
h0 = rectwin(N).*hideal; % window with rectangular window
h1 = blackmanharris(N).*hideal % window with Blackman-Harris window

Nd = 2048; % number of points around unit circle
FF = -0.5:1/Nd:0.5-1/Nd; % frequency axis for DFT plots
H0 = freqz(h0,1,Nd,’whole’); % DFT of h0
H1 = freqz(h1,1,Nd,’whole’); % DFT of h1

% plot H0 and H1 in dB
% and zoom in on the passband

plot(FF,20*log10(abs(fftshift(H0))),’b-’,FF,20*log10(abs(fftshift(H1))),’b--’);
grid on;
xlabel(’frequency (cycles/sample)’);
ylabel(’magnitude (dB)’);
axis([0.1 0.30 -60 5]);
set(gca,’XTick’,[0.1 0.15 0.2 0.25 0.3]);
legend(’retangular window’,’Blackman-Harris window’);

MATLAB R© code notes:

1. Compare the 7th line (hideal = · · ·) with equation (18). Equation (18) includes the
term sin(πB)/(πB) which your textbook would call sinc(πB); see (5.66) on page 213. In
contrast, line 7 includes the term sinc(B)—the π is missing. This is because MATLAB R©

uses the definition sinc(x) = sin(πx)/(πx); see the footnote on page 213.

2. The MATLAB R© code uses the built in functions rectwin and blackmanharris to
compute the window functions.

3. The function freqz(b,a,Nd,’whole’) evaluates

H(z) =
b0 + b1z

−1 + b2z
−2 + bMz

−M

1 + a1z−1 + a2z−2 + aNz−N
(25)

at z = exp(j2πk/Nd) for k = 0, 1, . . . , Nd − 1. Here, the inputs b and a are the vectors

b = [b0, b1, . . . , bM] a = [1, a1, a2, . . . , aN]. (26)

18 2 FIR Filter Design

0.1 0.15 0.2 0.25 0.3
−60

−50

−40

−30

−20

−10

0

frequency (cycles/sample)

m
a
g
n
it
u
d
e
 (

d
B

)

retangular window

Blackman−Harris window

Figure 7: The effect on using different windows. The ideal impulse response is given by (18)
for B = 0.05 cycles/sample and F0 = 0.2 cycles/sample. The frequency responses are for the
windowed versions of (18). The length of the window is 101.

In words, the function returns the H(z) evaluated at Nd equally spaced points on the unit
circle. This is a discretized (in Ω) version of the operation described in Section 8-1.1 of
the text. Thus, freqz returns samples of the DTFT H(ejΩ) at Ω = 2π/Nd × k for k =

0, 1, . . . , Nd − 1. In this case, we have a1 = a2 = · · · = aN = 0, so the second argument of
freqz() is 1. The ordering of the outputs corresponds to

Ω = 0, 2π/Nd, 4π/Nd, . . . , 2π(Nd − 1)/Nd.

Because we like to plot the DTFT in the range −π ≤ Ω < π instead of 0 ≤ Ω < 2π, the
MATLAB R© function fftshift is used to reorder the samples for the plot. In other words,
fftshift(H0) orders the elements of H0 to match that of the frequency samples in the
vector FF.

Intro. Discrete-Time Filter Design 19

3 Recursive Filter Design

Discrete-time recursive filters are described by their z-domain transfer functions. The z-transfer
function of a recursive system is given by (7.111):

H(z) =
Y(z)

X(z)
=
b0 + b1z

−1 + · · ·+ bM−1z
−(M−1)

1 + a1z−1 + · · ·+ aN−1z−(N−1)
(27)

This is a rational function of z. The word rational suggests ratio, and ratio refers to the ratio of
polynomials. Note that here we follow another convention from the discrete-time signal processing
world: we think of rational function as a ratio of polynomials in z−1. In your text, (7.111) is a ratio
of polynomials in z. Both forms are equivalent. Both forms are correct. Polynomials in z are more
common in digital control. Following the discrete-time signal processing convention we defined
the polynomials

A(z) = 1 + a1z
−1 + · · ·+ aN−1z

−(N−1)

B(z) = b0 + b1z
−1 + · · ·+ bM−1z

−(M−1)
(28)

and think of the z-transform as
H(z) =

B(z)

A(z)
. (29)

The roots of the polynomial B(z) are called the zeros of H(z) and the roots of the polynomial
A(z) are called the poles of H(z).

Designing a recursive filter means defining the locations of the poles and zeros of H(z) so that
H(ejΩ) meets the performance specifications. This is one of the challenging concepts for those
new to filter design: the performance specifications define the desired properties for the DTFT
H(ejΩ); but the design occurs in the z-plane defined by H(z). As long as one remembers two
things, this approach is not so bad:

1. H(ejΩ) = H(z) where z = ejΩ.

2. A graphical method for the relationship between the poles and zeros of H(z) and the mag-
nitude and phase of H(ejΩ) is described in Section 8-1 of your text.

The role of pole placement to design a recursive bandpass filter is well illustrated by the fol-
lowing example. Consider the simple single pole system given by

H(z) =
1

1− z−1
.

20 3 Recursive Filter Design

z-plane
unit circle

�⇡ ⇡
⌦

0

H(ej⌦) =
1

1 � e�j⌦

H(ej⌦)

H(z) =
1

1 � z�1

(a)

z-plane
unit circle

�⇡ ⇡
⌦

0

H(ej⌦)

H(z) =
1

1 � 0.95z�1
H(ej⌦) =

1

1 � 0.95e�j⌦

(b)

Figure 8: A single pole low-pass filter: (a) the lowpass filter with a pole at z = 1; (b) the lowpass
filter with a pole at z = 0.95.

This system has one pole at z = 1 as illustrated in Figure 8 (a). The corresponding DTFT is

H(ejΩ) =
1

1− e−jΩ

and is also shown Figure 8 (a). Because the pole is on the unit circle, the DTFT comprises an
impulse at Ω = 0 rads/sample as shown. This is not a very useful filter. (Is it stable?) To create a
usable lowpass filter the pole must be moved just off the unit circle. Should we move it just inside
or outside the unit circle? In Figure 8 (b) the pole is moved from z = 1 to z = 0.95. (Why did we
move the pole inside the unit circle?) The corresponding DTFT is also shown in Figure 8 (b).

Following the discussion of Section 8-1.4, a bandpass filter with passband centered at Ω = Ω0

is a system with a pole close to unit circle at an angle Ω0 relative to the positive real z axis. This

Intro. Discrete-Time Filter Design 21

means a bandpass filter can be created from the lowpass filter of Figure 8 (b) by rotating the pole
by Ω0. The pole is rotated by multiplying it by ejΩ0 . The result is

H1(z) =
1

1− 0.95ejΩ0z−1

and is shown in Figure 9 (a). The corresponding DTFT, also shown in Figure 9 (a), displays a
passband centered at Ω = Ω0. Because the DTFT is not symmetric, the filter impulse response
(given by the inverse DTFT) is complex-valued. To create a real-valued filter, we require a DTFT
displays complex-conjugate symmetry in Ω. The first step in creating a bandpass filter with the
required symmetry is to create a second bandpass filter centered at Ω = −Ω0. This filter is

H2(z) =
1

1− 0.95e−jΩ0z−1

and is shown in Figure 9 (b). The corresponding DTFT, also shown in Figure 9 (b), displays a
passband centered at Ω = −Ω0. The desired filter is the sum of these two filters:

H(z) = H1(z) + H2(z).

The result is shown in Figure 9 (c). Note that because

H(z) =
1

1− 0.95ejΩ0z−1
+

1

1− 0.95e−jΩ0z−1

=
1− 0.95e−jΩ0z−1 + 1− 0.95ejΩ0z−1

(1− 0.95ejΩ0z−1)(1− 0.95e−jΩ0z−1)

=
1− 1.9 cos(Ω0)z−1

1− 1.9 cos(Ω0)z−1 + 0.9025z−2
,

H(z) has a zero at z = 1.9 cos(Ω0). This zero, shown in the pole-zero plot of Figure 9 (c), forces
H(ejΩ) to be small at Ω ≈ 0 as shown in DTFT plot of Figure 9 (c).

This approached can be generalized to create a recursive bandpass filter based on an a recursive
low-pass filter. Let

HLPF(z) =
B(z)

A(z)
(30)

be the z transform of an n-th order recursive lowpass filter. For now, assume the degrees of A(z)

22 3 Recursive Filter Design

z-plane
unit circle

�⇡ ⇡
⌦

0

H(ej⌦)

⌦0

H(z) =
1

1 � 0.95ej⌦0z�1
H(ej⌦) =

1

1 � 0.95e�j(⌦�⌦0)

⌦0

(a)

z-plane
unit circle

�⇡ ⇡
⌦

0

H(ej⌦)

�⌦0

H(ej⌦) =
1

1 � 0.95e�j(⌦+⌦0)

�⌦0

H(z) =
1

1 � 0.95e�j⌦0z�1

(b)

z-plane
unit circle

�⇡ ⇡
⌦

0

H(ej⌦)

⌦0

⌦0

�⌦0

�⌦0

H(ej⌦) =
1

1 � 0.95e�j(⌦�⌦0)

+
1

1 � 0.95e�j(⌦+⌦0)

H(z) =
1

1 � 0.95ej⌦0z�1

+
1

1 � 0.95e�j⌦0z�1

(c)

Figure 9: A single pole band-pass filter: (a) the complex-valued bandpass filter with a pole at
z = 0.95ejΩ0; (b) the complex-valued bandpass filter with a pole at z = 0.95e−jΩ0; (c) the real-
valued bandpass filter created from the first two filters.

Intro. Discrete-Time Filter Design 23

and B(z) are both n:

A(z) = 1 + a1z
−1 + · · ·+ anz

−n (31)

B(z) = b0 + b1z
−1 + · · ·+ bnz

−n. (32)

To rotate the poles of HLPF(z) by Ω0, each root of A(z) must be multiplied by ejΩ0 . To do this, we
rewrite A(z) in terms of its roots:

A(z) = (1− ρ1z
−1)(1− ρ2z

−1) · · · (1− ρnz−1) (33)

where ρ1, ρ2, . . . , ρn are the n roots of A(z). Multiplying each pole by ejΩ0 produces

A+(z) = (1− ρ1e
jΩ0z−1)(1− ρ2e

jΩ0z−1) · · · (1− ρnejΩ0z−1). (34)

Multiplying this out and collecting terms with common power of z−1 gives

A+(z) = 1 + a1e
jΩ0z−1 + a2e

j2Ω0z−2 + · · ·+ ane
jnΩ0z−n. (35)

To rotate the zeros of HLPF(z) by Ω0, we multiply the roots of B(z) by ejΩ0 . The result is

B+(z) = b0 + b1e
jΩ0z−1 + b2e

j2Ω0z−2 + · · ·+ bne
jnΩ0z−n. (36)

Following the same procedure, the poles and zeros of HLPF(z) are rotated by −Ω0 by multiplying
them by e−jΩ0 to produce

A−(z) = 1 + a1e
−jΩ0z−1 + a2e

−j2Ω0z−2 + · · ·+ ane
−jnΩ0z−n (37)

B−(z) = b0 + b1e
−jΩ0z−1 + b2e

−j2Ω0z−2 + · · ·+ bne
−jnΩ0z−n. (38)

The desired bandpass filter is defined by the transfer function

HBPF(z) =
B+(z)

A+(z)
+

B−(z)

A−(z)
=

B+(z)A−(z) + B−(z)A+(z)

A+(z)A−(z)
. (39)

The following segment of MATLAB R© code creates a 6-th order bandpass filter from a 3-rd order
Butterworth lowpass filter. The code computes the polynomial products required in (39) by ex-
ploiting the fact that the coefficients of the product of two polynomials is given by the convolution
of the coefficients of multiplicand and multiplier polynomials.

24 3 Recursive Filter Design

n = 3; % LPF filter order
Wc = 2*pi*0.02; % LPF corner frequency
W0 = 2*pi*0.1; % BPF center frequency
[b,a] = butter(n,Wc/pi); % create 3rd order B’worth LPF

aplus = a.*exp(1i*W0*(0:n)); % rotate poles by W0
bplus = b.*exp(1i*W0*(0:n)); % rotate zeros by W0
aminus = a.*exp(-1i*W0*(0:n)); % rotate poles by -W0
bminus = b.*exp(-1i*W0*(0:n)); % rotate zeros by -W0

bb = conv(bplus,aminus) + conv(bminus,aplus); % BPF zeros
aa = conv(aplus,aminus); % BPF poles
aa = real(aa); % eliminate round-off error

figure(1);
subplot(211);
zplane(b,a); % pole-zero plot of LPF
axis(1.2*[-1 1 -1 1]);
subplot(212);
zplane(bb,aa); % pole-zero plot of BPF
axis(1.2*[-1 1 -1 1]);

N = 1024; % # points on unit circle
FF = -0.5:1/N:0.5-1/N; % corresponding freq. axis
H_lpf = freqz(b,a,N,’whole’); % DFT of LPF
H_bpf = freqz(bb,aa,N,’whole’); % DFT of BPF

figure(2);
subplot(211);
plot(FF,20*log10(abs(fftshift(H_lpf)))); % plot DFT of LPF
grid on;
xlabel(’frequency (cycles/sample)’);
ylabel(’magnitude (dB)’);
set(gca,’XTick’,-0.5:0.1:0.5);
axis([-0.5 0.5 -60 3]);

subplot(212);
plot(FF,20*log10(abs(fftshift(H_bpf)))); % plot DFT of BPF
grid on;
xlabel(’frequency (cycles/sample)’);
ylabel(’magnitude (dB)’);
set(gca,’XTick’,-0.5:0.1:0.5);
axis([-0.5 0.5 -60 3]);

Intro. Discrete-Time Filter Design 25

−1 0 1

−1

−0.5

0

0.5

1

3

Real Part

Im
a
g
in

a
ry

 P
a
rt

−1 0 1

−1

−0.5

0

0.5

1

Real Part

Im
a
g
in

a
ry

 P
a
rt

Figure 10: Pole-zero plots: (top) the 3-rd order Butterworth lowpass filter; (bottom) the 6-th order
bandpass filter crated from the lowpass filter.

26 3 Recursive Filter Design

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−60

−40

−20

0

frequency (cycles/sample)

m
a
g
n
it
u
d
e
 (

d
B

)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−60

−40

−20

0

frequency (cycles/sample)

m
a
g
n
it
u
d
e
 (

d
B

)

Figure 11: Frequency domain transfer functions: (top) the 3rd-order Butterworth lowpass filter;
(bottom) the 6-th order bandpass filter created from the lowpass filter. Cf. Figure 10.

Intro. Discrete-Time Filter Design 27

A Some Background on IIR Filter Design

In ECEn 340, students are required to design and construct a 2nd-order Butterworth filter. This
filter is used as an anti-aliasing filter on the input side to an analog-to-digital (A/D) converter. (See
Section 6-12.12 for a discussion on the need for an anti-aliasing filter prior to sampling.) The filter
requirements are derived from the application:

1. Because the sample rate is 100 ksamples/s, the filter bandwidth must be 50 kHz. For a
Butterworth filter, the bandwidth is defined as “corner frequency.” The corner frequency is
the frequency ωc where |Ĥ(ωc)|2 is 1/2 its peak value. Because 10 log10(1/2) = −3 dB, the
corner frequency is sometimes called the “3-dB frequency.” See Figure 6-2 (a), pg. 247. So,
the filter requirement is ωc = 100π krads/s.

2. The order of the filter (this will be explained below) is derived from complexity consider-
ations: a 2nd-order system is relatively easy to implement and there is not enough circuit
board area to do much more.

The procedure used by the ECEn 340 students was the following:

1. The s-domain transfer function of an n-th order Butterworth lowpass filter is

H(s) =
1

Dn(s)

where Dn(s) is the n-th order Butterworth polynomial. A list of these polynomials for n =

1, 2, . . . , 10 is listed in Table 6-3 on page 285 of the text. Here we have D2(s) = s2+
√

2s+1

so that
H(s) =

1

s2 +
√

2s + 1
. (40)

The order of the filter is simply the order of the denominator polynomial in H(s). Because an
n-th order polynomial has n roots, an n-order filter has n poles. The number of poles is equal
to the number of “memory elements” (i.e. capacitors or inductors) needed to instantiate the
filter. The transfer function (40) is the transfer function for a 2nd-order filter with corner
frequency ωc = 1 rad/s, but the requirement is ωc = 100π krads/s. This adjustment is made
by dividing s by ωc:

H(s) =
1(

s

100π × 103

)2

+
√

2

(
s

100π × 103

)
+ 1

. (41)

28 A Some Background on IIR Filter Design

2. The realization of this filter is based on the Sallen-Key filter topology. The Sallen-Key
topology for a second order low-pass filter is shown below. (This is reproduced from Figure
6-42, pg. 285 of the text.)

+

–

R1 R2

C2

C1

vin
vout

(This is also the op-amp circuit of Problem 4.32.) The s-domain transfer function is

H(s) =
1

C1C2R1R2s2 + (R1 +R2)C2s + 1

(see Example 6-11, pp. 285–286 of the text). The desired low-pass filter results from choos-
ing the component values (R1, R2, C1, and C2) to generate the transfer function (41). The
equations are

C1C2R1R2 =
1

(100π × 103)2

(R1 +R2)C2 =

√
2

100π × 103
.

(42)

We have two equations in four unknowns. From a purely mathematical point of view, this is
an underdetermined system of equations for which there are an infinite number of solutions.
But given the fact that resistors and capacitors are only available in a discrete set of resistance
and capacitance values, respectively, the problem is not not as unsolvable as it might first
appear.

To generalize, the design a continuous-time filter is a three step process. First, the filter require-
ments must be defined. Second, the filter requirements are used to determine the transfer function

H(s) =
B(s)

A(s)
.

Intro. Discrete-Time Filter Design 29

Third, a circuit topology is chosen and the component values are selected to realize the desired
transfer function H(s).

The design of a discrete-time 2nd-order Butterworth lowpass filter proceeds in much the same
way. The starting point is the continuos-time filter design in the s-domain. Next, the s-domain
transfer function is converted to a z-domain transfer function. The discrete-time filter follows
directly from the z-domain transfer function. The procedure is outlined as follows:

1. First, the requirements of the discrete-time filter are defined (i.e., the cut-off frequency Ωc =

ωcTs is determined).

2. Second, the transfer function of the corresponding continuous-time 2nd-order Butterworth
filter is calculated:

Hc(s) =
1(

s

ωc

)2

+

√
2

ωc
s + 1

. (43)

Here, we call this filter the prototype filter.

3. Next, the prototype filter is converted to a discrete-time filter. This is accomplished by
transforming the continuous-time s-domain transfer function Hc(s) an equivalent discrete-
time z-domain transfer function Hd(z) using the mapping

s =
2

Ts

z− 1

z + 1
. (44)

This mapping is called the bilinear transform. The result is

Hd(z) = Hc

(
2

Ts

z− 1

z + 1

)

=

Ω2
c

4 + 2
√

2Ωc + Ω2
c

[
z2 + 2z + 1

]
z2 − 8− 2Ω2

c

4 + 2
√

2Ωc + Ω2
c

z +
4− 2

√
2Ωc + Ω2

c

4 + 2
√

2Ωc + Ω2
c

(45)

=

Ω2
c

4 + 2
√

2Ωc + Ω2
c

[
1 + 2z−1 + z−2

]
1− 8− 2Ω2

c

4 + 2
√

2Ωc + Ω2
c

z−1 +
4− 2

√
2Ωc + Ω2

c

4 + 2
√

2Ωc + Ω2
c

z−2

(46)

30 A Some Background on IIR Filter Design

The last line is of the form

Hd(z) =
B(z)

A(z)
=
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(47)

and this defines the recursive IIR filter based on the continuous-time Butterworth filter. Note
that for discrete-time filters, we prefer the form (46) over the form (45) because signal pro-
cessors tend to think of LTI systems in terms of the unit delay operator z−1.

4. For the continuous-time filter, the last step involved designing the circuit required to realize
the filter. Here, the last step is a VLSI layout involving registers, multipliers, and adders, or
computer code to instantiate the recursion defined by Hd(z).

The procedure for the design of the discrete-time recursive IIR filter paralleled that for the
continuous-time filter. The big difference was the use of the bilinear transform to convert Hd(s) to
Hd(z). The reason the bilinear transform is used is illustrated in Figure 12. Here, it is best to think
of the bilinear transform as a mapping: it maps the complex-valued variable s to the complex-
valued variable z. As a consequence of mapping s to z, it maps regions in the s-plane to regions
in the z-plane. The two s-plane regions of interest are the jω axis and the open left-half plane.
The bilinear transform (44) maps the jω axis in the s-plane to the unit circle in the z-plane and
all points in the left-half s-plane to points inside the unit circle in the z-plane. The first property
of the mapping is desirable because it maps the continuous-time frequency axis in the s-plane to
the discrete-time frequency circle in the z-plane. The second property of the mapping is desirable
because it maps a causal stable continuous-time system to a causal stable discrete-time system.

As an example, let’s design a discrete-time 2nd-order Butterworth filter operating on data sam-
pled at 100 ksamples/s and with a corner frequency of 1 kHz (ωc = 2000π rads/s). In this case,
Ωc = ωcTs = 2000π × 10−5 = 2π × 0.01 rads/sample. The s-domain transfer function of the
continuous-time prototype filter and the z-domain transfer function of the desired discrete-time
filter are

Hc(s) =
1(

s

ωc

)2

+

√
2

ωc
s + 1

(48)

Hd(z) = 9.4408× 10−4 × 1 + 2z−1 + z−2

1− 1.9112 z−1 + 0.9150 z−2
. (49)

To write a computer program that applies this filter an input sequence x[n] to produce an output
sequence y[n], the time-domain input/output relations corresponding to (49) is needed. The time-

Intro. Discrete-Time Filter Design 31

s-plane z-plane

pole in left-
half plane

pole inside
unit circle

s-plane z-plane
jω-axis unit circle

(a)

(b)

s =
2

Ts

1 � z�1

1 + z�1

Figure 12: The conformal mapping defined by the bilinear transform (44): (a) the jω axis in the
s-plane maps to the unit circle in the z-plane; (b) all points in the left-half s-plane map to points
inside the unit circle in the z-plane.

32 A Some Background on IIR Filter Design

domain input/output relationship is

y[n] = 1.9112 y[n− 1]− 1.9112 y[n− 2]+

9.4408× 10−4x[n] + 18.8816× 10−4x[n− 1] + 9.4408× 10−4x[n− 2]. (50)

MATLAB R© has a built in function that efficiently computes this recursion. The function is filter.
The following segment of MATLAB R© code uses the filter command to apply the filter defined
by (49) to the input vector x to produce the output vector y:

a = [1 -1.9112 0.9150]; % coefficients of denominator polynomial
b = 9.4408e-4*[1 2 1]; % coefficients of numerator polynomial
y = filter(b,a,x); % apply the recursive filter to x

% to produce y

It is interesting to compare the continuous time prototype filter Hc(s) with the discrete-time
filter Hd(z). The denominator polynomial of Hc(s) is(

s

ωc

)2

+

√
2

ωc
s + 1.

The roots of this polynomial are

− 1√
2
ωc ± j

1√
2
ωc.

These are the poles of Hc(s). The s-domain pole-zero plot of Hc(S) is shown in Figure 13. The
poles lie on a circle of radius ωc in the OLHP. (This is the Butterworth design criterion. See Section
6-8, pp. 278 – 287 of the text.) The corresponding frequency domain transfer function Hc(ω) is
also plotted in Figure 13. Here we see the flat passband extending from 0 to about 1000π rads/s.
As ω increases, |Hc(ω)| decreases a little and crosses −3 dB at ωc = 2000π rads/s. (This is what
it is designed to do.) For the ω > ωc, we see the characteristic slope of 40 dB/decade.1

The bilinear transform (44) maps the s-domain poles −4442.9 ± j4442.9 to the z-domain
poles 0.9556 ± j0.0425. The z-domain poles (along with the two z-domain zeros) are plotted in
Figure 14. Observe that the poles are located near z = ej0 = 1 as expected for a discrete-time
lowpass filter. The DTFT Hd(e

jΩ) is Hd(z) evaluated along the unit circle and is also plotted in
Figure 14. Observe that the filter possesses unity gain for Ω ≈ 0. For |Ω| > 0 the gain decreases.

1The frequency domain transfer function Ĥ(ω) of an n-th order system is characterized by a slope of 20n
dB/decade for frequencies outside the pass band. See the discussion in Sections 6.1-3 and 6.2-5 of the text, along
with the examples described in Sections 6-2.2, 6-2.3, and 6-3.3.

Intro. Discrete-Time Filter Design 33

The “40 dB per decade” rule does not apply here. This is because Hd(e
jΩ) is periodic in Ω whereas

Ĥ(ω) is not periodic in ω. This is a consequence of the nonlinear relationship between ω and Ω.

To generalize to an n-th order discrete-time Butterworth lowpass filter, one follows the same
four steps, except using Dn(s) in place of D2(s) for the continuous-time prototype filter. These
steps are repeated here for convenience.

1. First, the requirements of the discrete-time filter are defined (i.e., the cut-off frequency Ωc =

ωcTs is determined).

2. Second, the transfer function of the corresponding continuous-time n-th order Butterworth
filter is calculated:

Hc(s) =
1

Dn(s)
. (51)

3. Next, the continuous-time s-domain transfer function Hc(s) is transformed to an equivalent
discrete-time z-domain transfer function Hd(z) using the bilinear transform (44):

Hd(z) = Hc

(
2

Ts

z− 1

z + 1

)
=

1

Dn

(
2

Ts

z− 1

z + 1

) (52)

4. Filter realization: for a hardware realization, a VLSI layout involving registers, multipliers,
and adders completes the design; for a realization in a programmable processor, writing the
computer code to perform the recursion corresponding to Hd(z) completes the design.

Step 3 was hard enough for the second order systems and can be a tedious exercise for n > 2. For-
tunately MATLAB R© has a function that performs this step. Below is a segment of MATLAB R©

code that designs a 3-rd order discrete-time Butterworth lowpass filter with Ωc = 2π × 0.01

rads/sample and applies it to a data vector x:

Wc = 2*pi*0.01; % define the cutoff frequency rads/sample
[b,a] = butter(3,Wc/pi); % use the butter function to produce the

% filter coefficients
y = filter(b,a,x); % apply the recursive filter to x

% to produce y

The mysterious division by π in the second line is required because of the way the MATLAB R©

function butter normalizes frequency. Typing help butter from the MATLAB R© prompt
gives

34 A Some Background on IIR Filter Design

−
5
0
0
0

−
4
5
0
0

−
4
0
0
0

−
3
5
0
0

−
3
0
0
0

−
2
5
0
0

−
2
0
0
0

−
1
5
0
0

−
1
0
0
0

−
5
0
0

0
5
0
0

−
5
0
0
0

−
4
0
0
0

−
3
0
0
0

−
2
0
0
0

−
1
0
0
0 0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

R
e
a
l{s

}

Imag{s}

1
0

2
1
0

3
1
0

4
1
0

5
1
0

6
−

8
0

−
7
0

−
6
0

−
5
0

−
4
0

−
3
0

−
2
0

−
1
0 0

Magnitude (dB)

F
re

q
u
e

n
c
y
 (ra

d
/s

)

Figure
13:Frequency

dom
ain

representations
ofthe

continuous-tim
e

2nd
orderB

utterw
orth

low
pass

filterw
ith

transferfunction
H

(s)
given

by
(41):(left)the

s-plane
pole-zero

plot,(right)the
corresponding

frequency
dom

ain
transferfunction

Ĥ
(ω

).

Intro. Discrete-Time Filter Design 35

−
1

−
0
.5

0
0
.5

1

−
1

−
0
.8

−
0
.6

−
0
.4

−
0
.20

0
.2

0
.4

0
.6

0
.81

2

R
e
a
l
P

a
rt

Imaginary Part

−
0

.5
0

0
.5

−
6

0

−
5

0

−
4

0

−
3

0

−
2

0

−
1

00

F
re

q
u
e
n

c
y
 (

c
y
c
le

s
/s

a
m

p
le

)
Magnitude (dB)

Fi
gu

re
14

:
Fr

eq
ue

nc
y

do
m

ai
n

re
pr

es
en

ta
tio

ns
of

th
e

di
sc

re
te

-t
im

e
2n

d
or

de
r

B
ut

te
rw

or
th

lo
w

pa
ss

fil
te

r
w

ith
tr

an
sf

er
fu

nc
tio

n
H
d
(z

)
gi

ve
n

by
(4

9)
:(

le
ft

)t
he

z-
pl

an
e

po
le

-z
er

o
pl

ot
,(

ri
gh

t)
th

e
co

rr
es

po
nd

in
g

fr
eq

ue
nc

y
do

m
ai

n
tr

an
sf

er
fu

nc
tio

n
H

(e
jΩ

).

36 A Some Background on IIR Filter Design

butter Butterworth digital and analog filter design.
[B,A] = butter(N,Wn) designs an Nth order lowpass digital
Butterworth filter and returns the filter coefficients in length
N+1 vectors B (numerator) and A (denominator). The coefficients
are listed in descending powers of z. The cutoff frequency
Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to
half the sample rate.

This means that the a and b should be length-4 vectors. The following segment of MATLAB R©

code shows this to be true:

>> [b,a] = butter(3,Wc/pi);
>> b

b =

1.0e-04 *

0.2915 0.8744 0.8744 0.2915

>> a

a =

1.0000 -2.8744 2.7565 -0.8819

The DTFT of this recursive filter can be viewed by computing Hd(z) = B(z)/A(z) at N
equally spaced points around the unit circle and plotting the results. The following segment of
MATLAB R© code produces the plot shown in Figure 15:

Wc = 2*pi*0.01; % define the cutoff frequency rads/sample
[b,a] = butter(3,Wc/pi); % use the butter function to produce the

% filter coefficients
N = 1024; % number of points around the unit circle
FF = -0.5:1/N:0.5-1/N; % the corresponding frequency axis
H = freqz(b,a,N,’whole’); % evaluate transfer function at

% N equally spaced points
% around the unit circle

figure(1); % plot the magnitude of H vs. FF
plot(FF,20*log10(abs(fftshift(H))));
grid on;
xlabel(’frequency (cycles/sample)’);
ylabel(’magnitude (dB)’);
axis([-0.5 0.5 -60 3]);

Intro. Discrete-Time Filter Design 37

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−60

−50

−40

−30

−20

−10

0

frequency (cycles/sample)

m
a
g
n
it
u
d
e
 (

d
B

)

Figure 15: The frequency response of the 3-rd order discrete-time Butterworth filter with Ωc =
2π × 0.01 rads/sample.

